首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10315篇
  免费   742篇
  国内免费   5篇
  2023年   35篇
  2022年   19篇
  2021年   181篇
  2020年   141篇
  2019年   177篇
  2018年   262篇
  2017年   205篇
  2016年   365篇
  2015年   555篇
  2014年   673篇
  2013年   718篇
  2012年   994篇
  2011年   908篇
  2010年   581篇
  2009年   502篇
  2008年   691篇
  2007年   597篇
  2006年   525篇
  2005年   486篇
  2004年   472篇
  2003年   388篇
  2002年   326篇
  2001年   230篇
  2000年   222篇
  1999年   191篇
  1998年   73篇
  1997年   64篇
  1996年   39篇
  1995年   43篇
  1994年   38篇
  1993年   28篇
  1992年   46篇
  1991年   48篇
  1990年   34篇
  1989年   21篇
  1988年   21篇
  1987年   13篇
  1986年   16篇
  1985年   10篇
  1984年   11篇
  1982年   10篇
  1980年   7篇
  1977年   6篇
  1976年   10篇
  1975年   6篇
  1974年   7篇
  1973年   9篇
  1972年   6篇
  1967年   8篇
  1966年   6篇
排序方式: 共有10000条查询结果,搜索用时 390 毫秒
71.
We find that overexpression in yeast of the yeast MCK1 gene, which encodes a meiosis and centromere regulatory kinase, suppresses the temperature-sensitive phenotype of certain mutations in essential centromere binding protein genes CBF2 and CBF5. Since Mck1p is a known serine/threonine protein kinase, this suppression is postulated to be due to Mck1p-catalyzed in vivo phosphorylation of centromere binding proteins. Evidence in support of this model was provided by the finding that purified Mck1p phosphorylates in vitro the 110 kDa subunit (Cbf2p) of the multimeric centromere binding factor CBF3. This phosphorylation occurs on both serine and threonine residues in Cbf2p.  相似文献   
72.
    
We used quantitative complementation assays to characterize individual DNA polymerase (Pol) mutants for their ability to function in DNA replication and DNA repair. We also describe a screen for detecting imitator activity of DNA polymerase mutants. By using these bioassays, together with DNA polymerase activity gels, we characterized 15 new DNA polymerase mutants that display a wide spectrum of phenotypes. Most of these mutants are generally defective in their ability to synthesize DNA. However, two of our Pol mutants show more complex phenotypes: they are able to function in DNA repair but unable to participate in DNA replication. One of our mutants displays imitator activity in vivo. Our work provides a model to study mutant mammalian enzymes inEscherichia coli with phenotypes that are otherwise difficult to assess.  相似文献   
73.
The old exonuclease of bacteriophage P2.   总被引:4,自引:2,他引:2       下载免费PDF全文
The Old protein of bacteriophage P2 is responsible for interference with the growth of phage lambda and for killing of recBC mutant Escherichia coli. We have purified Old fused to the maltose-binding protein to 95% purity and characterized its enzymatic properties. The Old protein fused to maltose-binding protein has exonuclease activity on double-stranded DNA as well as nuclease activity on single-stranded DNA and RNA. The direction of digestion of double-stranded DNA is from 5' to 3', and digestion initiates at either the 5'-phosphoryl or 5'-hydroxyl terminus. The nuclease is active on nicked circular DNA, degrades DNA in a processive manner, and releases 5'-phosphoryl mononucleotides.  相似文献   
74.
To alleviate plasmid instability and to prolong the production phase of subtilisin, integrable plasmid and spore mutants are used. Compared with batch-type shake flask cultures, spore mutants' ability to produce subtilisin can be well pronounced in fed-batch and continuous cultures. Hence, the two culture methods make it possible to identify the peculiar characteristics of the spore mutants unobtainable in batch culture. Spore mutants can enhance subtilisin productivity and prolong subtilisin production time in fed-batch culture as well as enable us to use very low dilution rates (<0.1 h(-1)) without losing productivity in continuous culture, thereby improving the conversion yield of the nitrogen source. At 0.05 h(-1) the spollG mutant of Bacillus subtilis DB104 (Deltanpr Deltaapr) (Em(r)) spollG (Bim(r)):: pMK101 (Cm(r)) showed a subtilisin yield about ten times higher than that from wild-type DB104 (Deltanpr Deltaapr)::pMK101 (Cm(r)). (c) 1995 John Wiley & Sons, Inc.  相似文献   
75.
Four mutants that show the delayed leaf senescence phenotype were isolated from Arabidopsis thaliana . Genetic analyses revealed that they are all monogenic recessive mutations and fall into three complementation groups, identifying three genetic loci controlling leaf senescence in Arabidopsis . Mutations in these loci cause delay in all senescence parameters examined, including chlorophyll content, photochemical efficiency of photosystem II, relative amount of the large subunit of Rubisco, and RNase and peroxidase activity. Delay of the senescence symptoms was observed during both age-dependent in planta senescence and dark-induced artificial senescence in all of the mutant plants. The results indicate that the three genes defined by the mutations are key genetic elements controlling functional leaf senescence and provide decisive genetic evidence that leaf senescence is a genetically programmed phenomenon controlled by several monogenic loci in Arabidopsis . The results further suggest that the three genes function at a common step of age-dependent and dark-induced senescence processes. It is further shown that one of the mutations is allelic to ein2-1 , an ethylene-insensitive mutation, confirming the role of ethylene signal transduction pathway in leaf senescence of Arabidopsis .  相似文献   
76.
S W Kim  S Joo  G Choi  H S Cho  B H Oh    K Y Choi 《Journal of bacteriology》1997,179(24):7742-7747
In order to clarify the roles of three cysteines in ketosteroid isomerase (KSI) from Pseudomonas putida biotype B, each of the cysteine residues has been changed to a serine residue (C69S, C81S, and C97S) by site-directed mutagenesis. All cysteine mutations caused only a slight decrease in the k(cat) value, with no significant change of Km for the substrate. Even modification of the sulfhydryl group with 5,5'-dithiobis(2-nitrobenzoic acid) has almost no effect on enzyme activity. These results demonstrate that none of the cysteines in the KSI from P. putida is critical for catalytic activity, contrary to the previous identification of a cysteine in an active-site-directed photoinactivation study of KSI. Based on the three-dimensional structures of KSIs with and without dienolate intermediate analog equilenin, as determined by X-ray crystallography at high resolution, Asp-103 was found to be located within the range of the hydrogen bond to the equilenin. To assess the role of Asp-103 in catalysis, Asp-103 has been replaced with either asparagine (D103N) or alanine (D103A) by site-directed mutagenesis. For D103A mutant KSI there was a significant decrease in the k(cat) value: the k(cat) of the mutant was 85-fold lower than that of the wild-type enzyme; however, for the D103N mutant, which retained some hydrogen bonding capability, there was a minor decrease in the k(cat) value. These findings support the idea that aspartic acid 103 in the active site is an essential catalytic residue involved in catalysis by hydrogen bonding to the dienolate intermediate.  相似文献   
77.
Herpesvirus saimiri strain 11 of subgroup A contains a gene called the saimiri transformation-associated protein, STP, which is not required for viral replication but is required for in vitro immortalization and for the lymphoma-inducing capacity of the virus. To assess the effects of sequence variation on STP function, STP genes from six subgroup A isolates were cloned and sequenced. Sequence comparisons revealed extensive amino acid substitutions within the central region, but the acidic amino terminus and the hydrophobic carboxyl terminus were well conserved. Amino acid identities varied from 73 to 99% among all two-way comparisons. The highly conserved YAEV/I motif at amino acid residues 115 to 118 was preceded by negatively charged glutamic acid residues and thus matched very well the consensus sequence for binding to SH2 domains of src family kinases. The STPs of these subgroup A strains were shown to associate with cellular src and to be an in vitro substrate for src kinase. Mutational analysis of STP-A11 showed that binding to src kinase required the tyrosine residue at 115, showing that YAEV/I is a likely binding motif for src. Also, tyrosine phosphorylation of STP-A11 by src led to subsequent binding to lck and fyn in vitro. Thus, the association of STP with src is likely to be important for T-cell transformation by subgroup A strains of herpesvirus saimiri.  相似文献   
78.
Pancreatic islets from DBA/2 mice infected with the D variant of encephalomyocarditis (EMC-D) virus revealed lymphocytic infiltration with moderate to severe destruction of pancreatic beta cells. Our previous studies showed that the major population of infiltrating cells at the early stages of infection is macrophages. The inactivation of macrophages prior to viral infection resulted in the prevention of diabetes, whereas activation of macrophages prior to viral infection resulted in the enhancement of beta-cell destruction. This investigation was initiated to determine whether macrophage-produced soluble mediators play a role in the destruction of pancreatic beta cells in mice infected with a low dose of EMC-D virus. When we examined the expression of the soluble mediators interleukin-1 beta (IL-1beta), tumor necrosis factor alpha (TNF-alpha), and inducible nitric oxide synthase (iNOS) in the pancreatic islets, we found that these mediators were clearly expressed at an early stage of insulitis and that this expression was evident until the development of diabetes. We confirmed the expression of these mediators by in situ hybridization with digoxigenin-labelled RNA probes or immunohistochemistry in the pancreatic islets. Mice treated with antibody against IL-1beta or TNF-alpha or with the iNOS inhibitor aminoguanidine exhibited a significant decrease in the incidence of diabetes. Mice treated with a combination of anti-IL-1beta antibody, anti-TNF-alpha antibody, and aminoguanidine exhibited a greater decrease in the incidence of disease than did mice treated with one of the antibodies or aminoguanidine. On the basis of these observations, we conclude that macrophage-produced soluble mediators play an important role in the destruction of pancreatic beta cells, resulting in the development of diabetes in mice infected with a low dose of EMC-D virus.  相似文献   
79.
Winder, W. W., H. A. Wilson, D. G. Hardie, B. B. Rasmussen,C. A. Hutber, G. B. Call, R. D. Clayton, L. M. Conley, S. Yoon, and B. Zhou. Phosphorylation of rat muscle acetyl-CoA carboxylase byAMP-activated protein kinase and protein kinase A. J. Appl. Physiol. 82(1): 219-225, 1997This studywas designed to compare functional effects of phosphorylation of muscleacetyl-CoA carboxylase (ACC) by adenosine 3,5-cyclicmonophosphate-dependent protein kinase (PKA) and by AMP-activatedprotein kinase (AMPK). Muscle ACC (272 kDa) was phosphorylated and thensubjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresisfollowed by autoradiography. Functional effects of phosphorylation weredetermined by measuring ACC activity at different concentrations ofeach of the substrates and of citrate, an activator of the enzyme. Themaximal velocity(Vmax) and theMichaelis constants(Km) for ATP,acetyl-CoA, and bicarbonate were unaffected by phosphorylation by PKA.Phosphorylation by AMPK increased theKm for ATP andacetyl-CoA. Sequential phosphorylation by PKA and AMPK, first withoutlabel and second with label, appeared to reduce the extent of label incorporation, regardless of the order. The activation constant (Ka) forcitrate activation was increased to the same extent by AMPKphosphorylation, regardless of previous or subsequent phosphorylation by PKA. Thus muscle ACC can be phosphorylated by PKA but with noapparent functional effects on the enzyme. AMPK appears to be the moreimportant regulator of muscle ACC.

  相似文献   
80.
Palsson BO  Oh DJ  Koller MR 《Cytotechnology》1995,18(1-2):125-131
The capability to expand human bone marrow mononuclear cells (BM MNC) in high density perfusion culture chambers (bioreactors) has recently been developed. In these bioreactors, total cell colony-forming unit-granulocyte/macrophage (CFU-GM), and long-term culture-initiating cell (LTC-IC) numbers increase significantly over a 14-day period. However, cell growth ceases after the 14-day period, possibly due to cell density limitations. Because of the remaining presence of early cells, it should be feasible to replate the cells and obtain continued expansion. In this study, we demonstrate that bioreactors generate cells, which upon replating into secondary bioreactors, lead to continued cell, CFU-GM, and LTC-IC8 (measured after 8 weeks of secondary culture) expansion. A two-stage protocol, involving the replating of cells on days 9 to 12 of culture into new bioreators at the original seeding density, yielded greater than 50-fold cell expansion from BM MNC in 25 days. CFU-GM were expanded inhibitory factor (LIF) had no significant effect on total cells, CFU-GM, or LTC-IC5 in this system. We conclude that two-stage bioreactor cultures are capable of supporting extended growth of human BM MNC, CFU-GM, and LTC-IC8. The continued expansion of these primitive cells in the second stage of culture suggests that primitive cells with significant proliferative potential were generated in this system, and previous data on LTC-IC5 expansion has now been extended to LTC-IC8 expansion. Further optimization of culture conditions is likely to improve on the results obtained here, thus making perfusion bioreactor culture correspondingly more attractive for expanding BM MNC for BM transplantation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号